Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jian-Hao Zhou, Yi-Zhi Li, Bin Huang and Xue-Tai Chen*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.062$
$w R$ factor $=0.164$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Bis(3,5-dimethyl-1,2,4-triazolato- κN^{4})bis(pivalic acid- κ) copper(II) dihydrate

The molecule of the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right)_{2}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, is situated about a site of symmetry $2 / m$ and shows a trans $-\mathrm{N}_{2} \mathrm{O}_{2}$ square-planar coordination geometry for the $\mathrm{Cu}^{\text {II }}$ centre. The crystal structure exhibits a two-dimensional layer arrangement mediated by intermolecular hydrogen bonds.

Comment

Molecular materials exhibiting interesting magnetic and luminescent properties have received increasing attention in recent years (Kahn et al., 1992; Kahn, 1993; Haasnoot, 2000; Thompson, 2002). 1,2,4-Triazole and its derivatives are able to provide several bridging coordination modes to link metal(II) ions, an important consideration for molecular materials. Indeed, many structures of coordination complexes have been reported, showing a variety of coordination modes (Haasnoot, 2000). Rare examples of structures containing the bridging 3,5-dimethyl-1,2,4-triazole ligand include N^{1}, N^{2} bridging (Yi et al., 2004) and N^{1}, N^{2}, N^{4} bridging (Drew et al., 1985; Zhang et al., 2004). Here, we report the title copper(II) complex, (I), with the 3,5-dimethyl-1,2,4-triazole ligand exhibiting a monodentate N^{4} coordination mode.

(I)

The molecule of (I) is disposed about a site of symmetry $2 / m$ (Fig. 1 and Table 1). The $\mathrm{Cu}^{\text {II }}$ atom is coordinated by two N^{4} atoms from two 3,5-dimethyl-1,2,4-triazole anions in a trans configuration. The $\mathrm{Cu}-N^{4}$ bond distances [mean 1.994 (5) Å] are in the range of those reported for catena-[$\left[\mu_{3}-3,5-\right.$ dimethyl-1,2,4-triazolato- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right]$ copper(I)] [1.963 (1)2.016 (1) \AA; Zhang et al., 2004]. The two remaining coordination sites in the square-planar geometry are occupied by O atoms from two pivalic acid molecules.

The crystal structure of (I) features intermolecular hydrogen bonds, as shown in Fig. 2; geometric details are given in Table 2. The hydroxyl group of (I) forms a hydrogen bond with the O atom of the solvent water molecule ($\mathrm{O} 1-$ $\mathrm{H} 1 B \cdots \mathrm{O} 3)$. The water molecule, in turn, links two N 2 atoms, so that a two-dimensional layer structure results.

Received 8 October 2004 Accepted 8 November 2004 Online 20 November 2004

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

The two-dimensional layer structure of (I) [symmetry code: (i) $\frac{1}{2}-x$, $\left.\frac{1}{2}-y, 2-z\right]$. Dashed lines indicate hydrogen bonds.

Experimental

3,5-Dimethyl-1,2,4-triazole ($0.068 \mathrm{~g}, 0.7 \mathrm{mmol}$) was added to an ethanol solution $(10 \mathrm{ml})$ of $\left[\mathrm{Cu}\left(\mathrm{Me}_{3} \mathrm{CCOO}\right)_{2}\right]_{2}(0.15 \mathrm{~g}, 0.28 \mathrm{mmol})$ with stirring. The resulting solution was stirred at 276 K for 24 h and then filtered. Uncharacterized blue compounds, which formed on slow evaporation of the mother liquor, were filtered off several times, before red crystals of (I) suitable for X-ray diffraction analysis were obtained from the mother liquor (18% yield). Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{Cu}_{1} \mathrm{~N}_{6} \mathrm{O}_{6}$: C 43.58, H 7.32, N 16.94%; found: C 43.83, H 7.61, N 16.74\%; IR (KBr, $v, \mathrm{~cm}^{-1}$): 3375 (br), 3053 (w), 2966 (m), 2935 (w), $2720(w), 1596$ (m), 1553 ($v s), 1484$ (m), 1439 (w), 1418 ($s), 1378$ (m),
$1364(m), 1322(w), 1225(m), 1146(w), 1087(w), 1051(w), 902(w)$, 754 (w), 619 (m).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=496.07$	
Monoclinic, $C 2 / m$	Mo $K \alpha$ radiation
$a=13.270(3) \AA$	Cell parameters from 709
$b=12.861(3) \AA$	reflections
$c=8.770(2) \AA$	$\theta=2.9-22.9^{\circ}$
$\beta=115.791(4){ }^{\circ}$	$\mu=0.85 \mathrm{~mm}^{-1}$
$V=134.6(5) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=2$	Block, red
	$0.33 \times 0.28 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.767, T_{\text {max }}=0.829$
3525 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.164$
$S=1.09$
1311 reflections
84 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
D_{x}=1.222 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 709
reflections
$\theta=2.9-22.9^{\circ}$
$\mu=0.85 \mathrm{~mm}$

Block, red
$0.33 \times 0.28 \times 0.23 \mathrm{~mm}$

1311 independent reflections
1141 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-16 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-10 \rightarrow 9$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.09 P)^{2} \\
&+1.95 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 2$	$1.974(4)$	$\mathrm{C} 3-\mathrm{O} 2$	$1.253(8)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.994(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.480(7)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.488(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.501(7)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.306(6)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.503(10)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.337(5)$	$\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$	$1.399(8)$
$\mathrm{C} 3-\mathrm{O} 1$	$1.251(7)$		
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	$120.7(5)$	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	$127.6(3)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$120.8(6)$	$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 3$	$103.3(3)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	180	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$1.1(6)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	0	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	$120.2(3)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$179.6(3)$	$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	$-59.8(3)$

Symmetry codes: (i) $1-x, y, 2-z$; (ii) $1-x,-y, 2-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1B $\cdots \mathrm{O} 3$	0.85	1.86	$2.637(6)$	151
O3-H3 $^{\mathrm{O}} \cdots \mathrm{N} 2^{\mathrm{i}}$	0.85	2.07	$2.748(5)$	137

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 2-z$.
Atoms H1B and H3A were found in a difference Fourier map and not refined. All other H atoms were positioned geometrically and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2\left(1.5\right.$ for methyl H) times $U_{\text {eq }}($ parent atom $)$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

metal-organic papers

This work was supported by a Measurement Grant of Nanjing University (grant No. 0205001333).

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Drew, M. G. B., Yates, P. C., Trocha-Grimshaw, J., McKillop, K. P. \& Nelson, S. M. (1985). J. Chem. Soc. Chem. Commun. pp. 262-263

Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.
Kahn, O. (1993). Molecular Magnetism. New York: VCH.
Kahn, O., Kröber, J. \& Jay, C. (1992). Adv. Mater. 4, 718-728.
Thompson, L. K. (2002). Coord. Chem. Rev. 233-234, 193-206.
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. \& Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.
Zhang, J. P., Zheng, S. L., Huang, X. C. \& Chen, X. M. (2004). Angew. Chem. Int. Ed. Engl. 43, 206-209.

[^0]: (C) 2004 International Union of Crystallography

